Examining Short-lived Radionuclide Creation in Supernovae Simulations

Charlotte K. Johnson

Dr. Patrick Young

Department of Physics, School of Earth and Space Exploration

Arizona State University

Purpose

- Computational models provide:
 - Guidance for observational data collection
 - A resource for interpreting observational data
 - Simulated information that cannot be recreated experimentally on Earth
- Provide insight into the history of our own solar system
 - Ratios of short-lived radionuclides (SLRs)
 - Heat source for differentiation

Progenitor Star and Supernova

- 15 M_{\odot} Red supergiant star
- Asymmetric explosion
 - Velocity 1.5 times greater at the poles compared to the equator
 - Velocity decreases as a sine function from the poles to the equator
- TYCHO stellar evolution code

- Asymmetrical jet
- Temperature and density combination effect supernovae processes

α -rich Freezeout

- High temperature (~10¹⁰ K) peaks of
 ⁴⁴Ti and ⁵⁶Ni
- He production peak at ~10¹⁰ K

ARIZONA

SPACE GRANT CONSORTIUM

²⁶Al as a Heat Source

- Short half-life of 717,000 years
- Traces of ²⁶Mg found on Earth
- Differentiation of small-mass celestial planetary bodies
 - Vesta

Future Work

- Further explore SLR ratios
- Explore additional supernovae geometry

Thank you!

Special thanks to the ASU/NASA Space Grant Program, Dr. Patrick Young, and Greg Vance

Questions?

